High performance traffic classification based on message size sequence and distribution
نویسندگان
چکیده
Classifying network flows into applications is a fundamental requirement for network administrators. Administrators used to classify network applications by examining transport layer port numbers or application level signatures. However, emerging network applications often send encrypted traffic with randomized port numbers. This makes it challenging to detect and manage network applications. In this paper, we propose two statistics-based solutions, the message size distribution classifier (MSDC) and the message size sequence classifier (MSSC) depending on classification accuracy and real timeliness. The former aims to identify network flows in an accurate manner, while the latter aims to provide a lightweight and real-time solution. The proposed classifiers can be further combined to build a hybrid solution that achieves both good detection accuracy and short response latency. Our numerical results show that the MSDC can make a decision by inspecting less than 300 packets and achieve a high detection accuracy of 99.98%. In contrast, the MSSC classifier can respond by only looking at the very first 15 packets and have a slightly lower accuracy of 94.99%. Our implementations on a commodity personal computer show that running the MSDC, the MSSC, and the hybrid classifier in-line achieves a throughput of 400 Mbps, 800 Mbps, and 723 Mbps, respectively.
منابع مشابه
Design and Construction of an Aerosol Particle Classification System Based on Electrical Mobility
Introduction: The application of particles’ electrical mobility in the electric field has always been an important concern, as the functional basis of a number of particle measuring and classification instrumentations. The objective of this study was to design and construct an aerosol particles classification system using electrical mobility feature in laboratory scale. Methodology: This labo...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملNetwork Parameters Evaluation in Vehicular Ad-hoc Network (VANET) Routing Protocols for Efficient Message Delivery in City Environment
Abstract- Efficient message delivery in city environment is required to ensure driver’s safety and passenger’s comfortability. In cities of developed nations, routing of data in vehicular Ad hoc Network (VANET) faces many challenges such as radio obstacles, mobility constraints and uneven nodes distribution. These factors primarily makes communication between vehicles complex. To overcome and t...
متن کاملAssessing Behavioral Patterns of Motorcyclists Based on Traffic Control Device at City Intersections by Classification Tree Algorithm
According to the forensic statistics, in Iran, 26 percent of those killed in traffic accidents are motorcyclists in recent years. Thus, it is necessary to investigate the causes of motorcycle accidents because of the high number of motorcyclist casualties. Motorcyclists' dangerous behaviors are among the causes of events that are discussed in this study. Traffic signs have the important role of...
متن کاملStatistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Network and Computer Applications
دوره 76 شماره
صفحات -
تاریخ انتشار 2016